Abstract

Distribution constant, (Kc) is employed to account for desorption of water molecules from soil particles. When water molecules have strong affinity for soil particles, Kc and moisture desorption is small. Conversely, when water molecules have weak affinity for soil particles, Kc is large and moisture desorption is significant. By approximating the distribution constant, Kc to be equal to thermodynamic equilibrium constant and with the aid of standard equations, insight is obtained into physico-chemical factors responsible for changes in enthalpy, entropy and free energy at equilibrium soil moisture loss condition. Analysis of experimental results showed that moisture desorption from moist pulverized soils is endothermic process as energy is required to overcome physico-chemical and suction bonds between water molecules and surface of soil pores and hydrogen bonds between water molecules. The heat of desorption increases with reduction in environmental relative humidity (aw) as water molecules occupy high binding energy sites at low environmental relative humidity. Moisture desorption is accompanied by increase in entropy as water molecules are disordered in vapor phase than in the liquid state. Trend of ∆G° values indicate that soil moisture loss becomes increasingly spontaneous (negative ∆G° values) with reduction in environmental relative humidity, which is supported by the highest Kc at least environmental relative humidity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.