Abstract

The adenosine A1 receptor is a therapeutic target based on its ability to provide cardioprotection during episodes of myocardial ischemia and reperfusion injury. However, the clinical translation of A1R agonists has been hindered by dose-limiting adverse effects (bradycardia and hypotension). Previously, we demonstrated that the bitopic agonist VCP746 (1), consisting of an adenosine pharmacophore linked to an allosteric moiety, can stimulate cardioprotective A1R signaling effects in the absence of unwanted bradycardia. This study maps the structure-activity relationships of 1 through modifications to the linker moiety. Derivatives differing in the flexibility, length, and nature of the linker were assessed, which revealed that the linker is tolerant of several modifications including added rigidity. Ligands featuring 1,4-disubstituted 1,2,3-triazoles were the most biased of the novel analogues but also displayed sub-nanomolar potency in a cAMP accumulation assay at the A2BR. To our knowledge, 10 is the most potent A2BR agonist published to date.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.