Abstract

AbstractThe influence of the Unified Noah and Noah‐MP land surface models (LSMs) on the evolution of cumulus clouds reaching convective initiation (CI) is assessed using infrared brightness temperatures (BT) from GOES‐16. Cloud properties from individual cloud objects are examined using output from high‐resolution (500 m horizontal grid spacing) model simulations. Cloud objects are tracked over time and related to observed clouds reaching CI to examine differences in cloud extent, longevity, and growth rate. The results demonstrate that differences in assumed surface properties can lead to large discrepancies in the net surface radiative budget, particularly in the sensible and latent heating components where differences exceed 40 W m−2. These differences lead to changes in the local mesoscale circulation patterns that are more pronounced near the edges of forested and grassland boundaries where lower‐level convergence is stronger. Higher sensible heating from the Noah‐MP LSM produced growth of CI clouds earlier and with increased longevity, which was closer to the timing and growth observed from GOES‐16. The increased cloud growth in the Noah‐MP experiment results from stronger and deeper updrafts, which lofts more cloud water into the upper levels of the troposphere. The weaker updrafts from the Noah LSM experiment results in shallower convection after CI is detected due to slower growth rates. The differences in cloud properties and growth are directly related to the land surfaces they develop above and point to the importance of accurately representing land properties and radiative characteristics when simulating convection in numerical weather prediction models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.