Abstract

This study examines the potential vulnerability of short-term memory processes to distraction by spatial changes within to-be-ignored bimodal, vibratory, and auditory stimuli. Participants were asked to recall sequences of serially presented digits or locations of dots while being exposed to to-be-ignored stimuli. On unexpected occasions, the bimodal to-be-ignored sequence, vibratory to-be-ignored sequence, or auditory to-be-ignored sequence changed their spatial origin from one side of the body (e.g., ear and arm, arm only, ear only) to the other. It was expected that the bimodal stimuli would make the spatial change more salient compared to that of the uni-modal stimuli and that this, in turn, would yield an increase in distraction of serial short-term memory in both the verbal and spatial domains. Our results support this assumption as a disruptive effect of the spatial deviant was only observed when presented within the bimodal to-be-ignored sequence: uni-modal to-be-ignored sequences, whether vibratory: or auditory, had no impact on either verbal or spatial short-term memory. Implications for models of attention capture and the potential special attention capturing role of bimodal stimuli are discussed.

Highlights

  • That sudden and unexpected changes in a sequence of to-be-ignored (TBI) auditory stimuli can have a disruptive effect on cognitive performance is well known

  • Research has shown that these sudden and unexpected changes, known as deviants, have the behavioral consequences of prolonging responses in categorization tasks (e.g., Parmentier, 2014) and impairing memory for the order and identity of serially presented items in short-term memory tasks. These effects are often referred to as attentional capture and have been reported in both uni-modal and cross-modal task settings

  • Bimodal and Uni-Modal Spatial Changes environment is rarely based on stimulation in one modality at a time

Read more

Summary

Introduction

That sudden and unexpected changes in a sequence of to-be-ignored (TBI) auditory stimuli can have a disruptive effect on cognitive performance is well known (e.g., see reviews by Hughes, 2014; Parmentier, 2014). Research has shown that these sudden and unexpected changes, known as deviants, have the behavioral consequences of prolonging responses in categorization tasks (e.g., Parmentier, 2014) and impairing memory for the order and identity of serially presented items in short-term memory tasks (e.g., serial-recall; Hughes et al, 2005, 2007) These effects are often referred to as attentional capture and have been reported in both uni-modal (e.g., task and TBI stimuli within the same modality; Berti, 2008) and cross-modal (e.g., task in the visual modality and TBI stimuli in the auditory modality; Hughes et al, 2005, 2007; Ljungberg and Parmentier, 2012) task settings. Research investigating stimuli from two sensory modalities has shown that bimodal stimuli (e.g., stimuli from two sensory modalities) can capture attention and improve performance (e.g., the pip-and-poke effect in search tasks; Van der Burg et al, 2009)

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.