Abstract

Working memory (WM) precision, or the fidelity with which items can be remembered, is an important aspect of WM capacity that increases over childhood. Why individuals are more or less precise from moment to moment and why WM becomes more stable with age are not yet fully understood. Here, we examined the role of attentional allocation in visual WM precision in children aged 8 to 13 years and young adults aged 18 to 27 years, as measured by fluctuations in pupil dilation during stimulus encoding and maintenance. Using mixed models, we examined intraindividual links between change in pupil diameter and WM precision across trials and the role of developmental differences in these associations. Through probabilistic modeling of error distributions and the inclusion of a visuomotor control task, we isolated mnemonic precision from other cognitive processes. We found an age-related increase in mnemonic precision that was independent of guessing behavior, serial position effects, fatigue or loss of motivation across the experiment, and visuomotor processes. Trial-by-trial analyses showed that trials with smaller changes in pupil diameter during encoding and maintenance predicted more precise responses than trials with larger changes in pupil diameter within individuals. At encoding, this relationship was stronger for older participants. Furthermore, the pupil–performance coupling grew across the delay period—particularly or exclusively for adults. These results suggest a functional link between pupil fluctuations and WM precision that grows over development; visual details may be stored more faithfully when attention is allocated efficiently to a sequence of objects at encoding and throughout a delay period.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call