Abstract

Historically, the irreversible reduction of aryldiazonium salts has provided a reliable method to modify surfaces, demonstrating a catalogue of suitable diazonium salts for targeted applications. This work expands the knowledge of diazonium salt chemistry to participate in surface electroinitiated emulsion polymerization (SEEP). The influence of concentration, electronic effects, and steric hindrance/regiochemistry of the diazonium salt initiator on the production of polymeric films is examined. The objective of this work is to determine if a polymer film can be tailored, controlling the thickness, density, and surface homogeneity using specific diazonium chemistry. The data presented herein demonstrate a significant difference in polymer films that can be achieved when selecting a variety of diazonium salts and vinylic monomers. A clear trend aligns with the electron-rich diazonium salt substitution providing the thickest films (up to 70.9 ± 17.8 nm) with increasing diazonium concentration and electron-withdrawing substitution achieving optimal homogeneity for the surface of the film at a 5 mM diazonium concentration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call