Abstract

Growing evidence suggests air pollutants may harm the central nervous system, potentially impacting mental health. However, such impacts of air pollutants on mental health and the sub-populations most affected remain poorly understood, especially in California. We examined the relationship between short-term ambient carbon monoxide (CO), nitrogen dioxide (NO2), and mental health-related emergency department (ED) visits in California from 2005 to 2013. Daily mean concentrations of the pollutants were acquired from the U.S. Environmental Protection Agency Air Quality System Data Mart ground monitoring data. Moving averages of pollutant concentrations were linked to counts of ED visits obtained from the California Office of Statewide Health Planning and Development. Seven mental health outcomes, defined by International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) codes, were studied: all mental disorders, bipolar disorder, depression, schizophrenia, substance abuse, homicide/inflicted injury, and suicide/self-harm. Monitor-level associations were estimated with quasi-Poisson regression models and combined using random-effects meta-analysis. CO and NO2 were found to be positively associated with ED visits due to homicide/inflicted injury, with the warm season (May–October) driving the CO association. An interquartile range (IQR) (0.28 ppm) increase in two-day average CO during the warm season was associated with a 3.13% (95% confidence interval (CI): 1.43, 4.84) elevation in risk of an ED visit due to homicide/inflicted injury (n = 122,749 ED visits). An IQR (10.79 ppb) increase in two-day average NO2 was associated with a 2.60% (95% CI: 1.17, 4.05) elevation in risk of an ED visit due to homicide/inflicted injury (n = 206,919 ED visits). Subgroup analyses indicated children, Hispanics, and males were particularly vulnerable. Except for an inverse relationship between NO2 and substance abuse, neither pollutant was robustly associated with visits due to other mental health morbidities. Our results suggest short-term elevations in CO and NO2 may promote violent behavior. Further investigation in other populations and ranges of air pollution exposure is warranted.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call