Abstract

The goal of this paper is to isolate the preparatory effects of problem-generation from solution generation in problem-posing contexts, and their underlying mechanisms on learning from instruction. Using a randomized-controlled design, students were assigned to one of two conditions: (a) problem-posing with solution generation, where they generated problems and solutions to a novel situation, or (b) problem-posing without solution generation, where they generated only problems. All students then received instruction on a novel math concept. Findings revealed that problem-posing with solution generation prior to instruction resulted in significantly better conceptual knowledge, without any significant difference in procedural knowledge and transfer. Although solution generation prior to instruction plays a critical role in the development of conceptual understanding, which is necessary for transfer, generating problems plays an equally critical role in transfer. Implications for learning and instruction are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call