Abstract

AbstractGiven the prohibitive expense of running a global coupled high-resolution model for multiweek forecasts, we explore the feasibility of running a limited-area model forced by a global model on monthly time scales. Specifically, we seek to understand the constraints of the accuracy of lateral boundary conditions (LBCs) produced by NAVGEM on the skill of limited-area COAMPS forecasts. In this study, we analyze simulations of the successive MJO events of November 2011. In the NAVGEM simulations, the effect of ocean boundary conditions are examined, including fixed sea surface temperature (SST), observed SST, and coupled SST with HYCOM. With fixed SST, the second MJO fails to develop, highlighting the importance of the ocean response in the ability to model successive MJO events. Next, we examine the dependence of the regional COAMPS skill on the global model forecast performance. It is found that even when using the inferior but computationally inexpensive uncoupled NAVGEM for LBCs, coupled COAMPS can accurately predict the successive MJO events. A well-resolved atmospheric Rossby wave that slowly propagates westward in the COAMPS domain contributes to increased predictive skill. Ocean coupling and the ability of the model to sufficiently warm the ocean during the convectively suppressed phase also appears to be critical. Last, while COAMPS exhibits a significant moist bias, the sign and magnitude of the vertical and horizontal moisture flux appear to be consistent with reanalysis, a necessary attribute of any model to be used in multiweek MJO prediction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.