Abstract

The asymptotically distribution-free (ADF) test statistic depends on very mild distributional assumptions and is theoretically superior to many other so-called robust tests available in structural equation modeling. The ADF test, however, often leads to model overrejection even at modest sample sizes. To overcome its poor small-sample performance, a family of robust test statistics obtained by modifying the ADF statistics was recently proposed. This study investigates by simulation the performance of the new modified test statistics. The results revealed that although a few of the test statistics adequately controlled Type I error rates in each of the examined conditions, most performed quite poorly. This result underscores the importance of choosing a modified test statistic that performs well for specific examined conditions. A parametric bootstrap method is proposed for identifying such a best-performing modified test statistic. Through further simulation it is shown that the proposed bootstrap approach performs well.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.