Abstract

Intense heat is a persistent urban challenge whose impacts are detrimental to human health. Heat-related effects disproportionately impact underserved populations. Modification of urban landscapes through increased imperviousness intensifies surface temperatures, leading to heightened heat exposure risks. While climate adaptation efforts have advanced, they are inadequate in addressing the uncertainties of climate change and the long-term risks of climate-related hazards. In addition, despite the numerous heat vulnerability studies across U.S. cities, the City of Reno is largely understudied. To address these gaps, the research examined the relationship between the spatiotemporal patterns of social vulnerability, changes in biophysical properties, and the heat hazard in Reno, Nevada. We utilized CDC census data to map the Social Vulnerability Index (SVI) and Landsat satellite data from 1990 to 2023 to analyze Land Surface Temperature (LST) trends for a temporal comparative study of heat patterns. Additionally, we employed the Normalized Difference Vegetation Index (NDVI) for vegetation extent. The zonal statistics tool helped assess the influence of different land use features on surface temperatures. The results showed that regions identified as social vulnerability hotspots often coincided with areas highly exposed to extreme temperatures and vice versa. Our findings also revealed an extension of heat vulnerability hotspots from the urban core to suburban regions. We observed a decline in mean LST values in regions covered by vegetation and a rise in mean surface temperatures in regions encompassed with imperviousness. These findings underscore the need for increased vegetation for heat mitigation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.