Abstract
A commercial diglycidyl ether of bisphenol A monomer (Baxxores™ ER 2200, eew 182 g/mole, DGEBA) is thermally polymerized in the presence of an ionic liquid, 1-ethyl-3-methylimidazolium acetate at a variety of loadings (5–45 wt %). The loss modulus data for cured samples, containing 5 wt % initiator, display at least two thermal transitions and the highest storage modulus occurs in the sample that has been cured for the shortest time at the lowest temperature. Samples that are exposed to higher temperatures (140, 150 °C) yield more heterogenous networks, whereas following exposure to a much shorter/lower temperature cure schedule (80 °C) exhibits a considerably higher damping ability than the other samples, coupled with a lower glass transition temperature. Differential scanning calorimetry reveals that the latter sample achieves a conversion of 95%, while crosslink densities for the DGEBA samples containing 5 wt % and 15 wt % are respectively 9.5 × 10−3 mol. dm−3 and 1.2 × 10−3 mol. dm−3 (when cured to 80 °C) and 2.0 × 10−2 mol. dm−3 and 2.4 × 10−3 mol. dm−3 (when cured to 140 °C).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.