Abstract
Amyloid fibrillogenesis has been involved in at least 40 different degenerative diseases. The 51-residue polypeptide hormone insulin, which is associated with type II diabetes, has been demonstrated to fibrillate in vitro. With bovine insulin as a model, the research presented here examines the influence of two simple, unstructured d,l-lysine-co-glycine (d,l-lys-co-gly) and d,l-lysine-co-L-phenylalanine (d,l-lys-co-phe) copolypeptides, on the in vitro fibril formation process of bovine insulin at pH 2.0 and 55°C. Our results showed that amyloid fibrillogenesis of insulin may be suppressed by both copolypeptides in a concentration-dependent fashion. In addition, the copolypeptides with higher molar fractions of glycine or l-phenylalanine residue, which are considered to possess higher hydrophobic interacting capacities, demonstrated the superior inhibitory potency against insulin fibril formation. Our findings suggest that the association of insulin and copolypeptides, which is likely dominated by hydrophobic interactions and hydrogen bonding, may mitigate the extent of insulin fibrillogenesis. We believe the results from this work may contribute to the understanding of the molecular factors affecting amyloid fibrillation and the molecular mechanism(s) of the interactions between the unstructured polypeptides and amyloid-forming proteins.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.