Abstract

The primary objective of this systematic review with meta-analysis is to methodically discern and compare the impact of diverse warm-up strategies, including both static and dynamic stretching, as well as post-activation potentiation techniques, on the immediate performance of gymnasts. Adhering to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, this paper evaluated studies that examined the gymnasts' performance after different warm-up strategies namely stretching (static [SS] or dynamic), vibration platforms (VP) or post-activation, in comparison to control conditions (e.g., mixed warm-up routines; no warm-up). The principal outcomes were centered on technical performance metrics (e.g., split, gymnastic jumps) and physical performance metrics (e.g., squat jump, countermovement jump, drop jump, balance, range of motion). Methodological assessments of the included studies were conducted using the Downs and Black Checklist. From the initial search across PubMed, Scopus, and the Web of Science databases, a total of 591 titles were retrieved, and 19 articles were ultimately incorporated in the analysis. The results revealed a non-significant differences (p > 0.05) between the SS condition and control conditions in squat jump performance, countermovement jump and gymnastic technical performance (e.g., split; split jump). Despite the difference in warm-up strategies and outcomes analyzed, the results suggest that there is no significant impairment of lower-limb power after SS. Additionally, technical elements dependent on flexibility appear to be enhanced by SS. Conversely, dynamic stretching and VP seem to be more effective for augmenting power-related and dynamic performance in gymnasts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.