Abstract

BackgroundIdentifying selective kinase inhibitors remains a major challenge. The design of bivalent inhibitors provides a rational strategy for accessing potent and selective inhibitors. While bivalent kinase inhibitors have been successfully designed, no comprehensive assessment of affinity and selectivity for a series of bivalent inhibitors has been performed. Here, we present an evaluation of the structure activity relationship for bivalent kinase inhibitors targeting ABL1.MethodsVarious SNAPtag constructs bearing different specificity ligands were expressed in vitro. Bivalent inhibitor formation was accomplished by synthesizing individual ATP-competitive kinase inhibitors containing a SNAPtag targeting moiety, enabling the spontaneous self-assembly of the bivalent inhibitor. Assembled bivalent inhibitors were incubated with K562 lysates, and then subjected to affinity enrichment using various ATP-competitive inhibitors immobilized to sepharose beads. Resulting eluents were analyzed using Tandem Mass Tag (TMT) labeling and two-dimensional liquid chromatography-tandem mass spectrometry (2D–LC-MS/MS). Relative binding affinity of the bivalent inhibitor was determined by calculating the concentration at which 50% of a given kinase remained bound to the affinity matrix.ResultsThe profiling of three parental ATP-competitive inhibitors and nine SNAPtag conjugates led to the identification of 349 kinase proteins. In all cases, the bivalent inhibitors exhibited enhanced binding affinity and selectivity for ABL1 when compared to the parental compound conjugated to SNAPtag alone. While the rank order of binding affinity could be predicted by considering the binding affinities of the individual specificity ligands, the resulting affinity of the assembled bivalent inhibitor was not predictable. The results from this study suggest that as the potency of the ATP-competitive ligand increases, the contribution of the specificity ligand towards the overall binding affinity of the bivalent inhibitor decreases. However, the affinity of the specificity components in its interaction with the target is essential for achieving selectivity.ConclusionThrough comprehensive chemical proteomic profiling, this work provides the first insight into the influence of ATP-competitive and specificity ligands binding to their intended target on a proteome-wide scale. The resulting data suggest a subtle interplay between the ATP-competitive and specificity ligands that cannot be accounted for by considering the specificity or affinity of the individual components alone.Electronic supplementary materialThe online version of this article (doi:10.1186/s12953-017-0125-1) contains supplementary material, which is available to authorized users.

Highlights

  • Identifying selective kinase inhibitors remains a major challenge

  • While the potency and specificity of both the ATP-competitive inhibitors and specificity ligands vary considerably, common among them is the ability to bind to ABL1

  • Consistent with previous finding, conjugation of A to SNAPtag led to a significant decrease in overall affinity; an average 17-fold loss in potency was observed for kinases that were competed by preincubation with 10 μM KAM

Read more

Summary

Introduction

Identifying selective kinase inhibitors remains a major challenge. The design of bivalent inhibitors provides a rational strategy for accessing potent and selective inhibitors. One of the central challenges in identifying small molecules suitable for use in cellular assays is achieving selectivity for the intended target. Bivalent inhibition is one strategy for rationally designing selective compounds [7]. In this design, a small molecule that modulates the function of a protein is linked to another molecule that has measurable affinity for the protein of interest, but binds at a secondary site. As a result of tethering the two binding modalities together, bivalent inhibitors exhibit enhanced binding affinity and selectivity for their intended target over the monovalent components

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call