Abstract

This study investigates the air quality impacts of using a high-blend ethanol fuel (E85) instead of gasoline in vehicles in an urban setting when a morning fog is present under summer and winter conditions. The model couples the near-explicit gas-phase Master Chemical Mechanism (MCM v. 3.1) with the extensive aqueous-phase Chemical Aqueous Phase Radical Mechanism (CAPRAM 3.0i) in SMVGEAR II, a fast and accurate ordinary differential equation solver. Summer and winter scenarios are investigated during a two day period in the South Coast Air Basin (SCAB) with all gasoline vehicles replaced by flex-fuel vehicles running on E85 in 2020. We find that E85 slightly increases ozone compared with gasoline in the presence or absence of a fog under summer conditions but increases ozone significantly relative to gasoline during winter conditions, although winter ozone is always lower than summer ozone. A new finding here is that a fog during summer may increase ozone after the fog disappears, due to chemistry alone. Temperatures were high enough in the summer to increase peroxy radical (RO2) production with the morning fog, which led to the higher ozone after fog dissipation. A fog on a winter day decreases ozone after the fog. Within a fog, ozone is always lower than if no fog occurs. The sensitivity of the results to fog parameters like droplet size, liquid water content, fog duration and photolysis are investigated and discussed. The results support previous work suggesting that E85 and gasoline both enhance pollution with E85 enhancing pollution significantly more at low temperatures. Thus, neither E85 nor gasoline is a ‘clean-burning’ fuel.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.