Abstract

Many behaviours have differential fitness consequences across thermal and ecological contexts, indicating that both ecological shifts and warming temperatures induced by climatic change may alter how organisms behave. However, empirical evidence of temperature-driven behavioural selection in natural systems is lacking. We compared behaviours and behavioural syndromes related to activity, exploration, boldness and aggression in populations of largemouth bass (Micropterus salmoides) from ambient lakes to the those from artificially warmed, power plant cooling lakes to investigate changes in behaviours associated with warmer environments. Activity, exploration, boldness and aggression of juvenile largemouth bass were assessed in laboratory conditions using a novel environment assay and a risky situation assay. We found that activity and exploratory behaviours were higher and decreased through first year ontogeny in populations from heated lakes, whereas these behaviours were lower and showed no relationship through ontogeny in populations from ambient lakes. We attribute these differences to the changes in food source availability in heated lakes associated with temperature-driven ecological effects. Bold and aggressive behaviours tended to differ between populations, as did correlations between behaviours, but did not differ between ambient and heated lakes. The findings of this work identify that large ecological changes associated with warming environments, such as food availability, may drive changes in some aspects of behavioural expression in largemouth bass but that other aspects of behavioural expression may be driven by lake-specific factors not related to warming.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.