Abstract

ABSTRACT Although mathematical modeling during problem solving has attracted increased scholarly interest, existing quantitative work in this field has largely concentrated on secondary and tertiary education. Using a cluster-randomized-trial design, this study explored the contribution of an intervention aiming to support upper elementary students’ problem-solving modeling performance. The analytic sample of the study consisted of 50 Grade 5 and 6 classes (815 students) whose teachers volunteered to participate in the study; the classes were assigned to either an experimental (25 classes) or a control condition (25 classes), each receiving five 80-minute lessons on either modeling activities or solving routine and process problems, respectively. Student problem-solving modeling performance was measured before, right after, and two months after the culmination of the intervention. The person estimates emerging from a Rasch analysis of these data were analyzed using inferential statistics and a multi-level piecewise linear growth model. The analyses showed that students in the experimental group outperformed their counterparts in the control group both at the immediate and late test administration. Additionally, fifth graders in the experimental group outperformed sixth graders in the control group. We discuss the implications of these findings for teaching modeling during problem solving in elementary grades.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.