Abstract
BackgroundThe urban built environment (BE) has been globally acknowledged as one of the main factors that affects the spread of infectious disease. However, the effect of the street network on coronavirus disease 2019 (COVID-19) incidence has been insufficiently studied. Severe acute respiratory syndrome coronavirus 2, which causes COVID-19, is far more transmissible than previous respiratory viruses, such as severe acute respiratory syndrome coronavirus, which highlights the role of the spatial configuration of street network in COVID-19 spread, as it is where humans have contact with each other, especially in high-density areas. To fill this research gap, this study utilized space syntax theory and investigated the effect of the urban BE on the spatial diffusion of COVID-19 cases in Hong Kong.MethodThis study collected a comprehensive dataset including a total of 3815 confirmed cases and corresponding locations from January 18 to October 5, 2020. Based on the space syntax theory, six space syntax measures were selected as quantitative indicators for the urban BE. A linear regression model and Geographically Weighted Regression model were then applied to explore the underlying relationships between COVID-19 cases and the urban BE. In addition, we have further improved the performance of GWR model considering the spatial heterogeneity and scale effects by adopting an adaptive bandwidth.ResultOur results indicated a strong correlation between the geographical distribution of COVID-19 cases and the urban BE. Areas with higher integration (a measure of the cognitive complexity required for a pedestrians to reach a street) and betweenness centrality values (a measure of spatial network accessibility) tend to have more confirmed cases. Further, the Geographically Weighted Regression model with adaptive bandwidth achieved the best performance in predicting the spread of COVID-19 cases.ConclusionIn this study, we revealed a strong positive relationship between the spatial configuration of street network and the spread of COVID-19 cases. The topology, network accessibility, and centrality of an urban area were proven to be effective for use in predicting the spread of COVID-19. The findings of this study also shed light on the underlying mechanism of the spread of COVID-19, which shows significant spatial variation and scale effects. This study contributed to current literature investigating the spread of COVID-19 cases in a local scale from the space syntax perspective, which may be beneficial for epidemic and pandemic prevention.
Highlights
The coronavirus disease 2019 (COVID-19) pandemic is one of the most severe global infectious disease pandemics in human history
The topology, network accessibility, and centrality of an urban area were proven to be effective for use in predicting the spread of COVID-19
This study contributed to current literature investigating the spread of COVID-19 cases in a local scale from the space syntax perspective, which may be beneficial for epidemic and pandemic prevention
Summary
The coronavirus disease 2019 (COVID-19) pandemic is one of the most severe global infectious disease pandemics in human history. With the continuous development of the epidemic and the increase of cases around the world, there emerge a vast body of research that exploring the spread of COVID-19 on city scale or even more microscopic community scale [13, 19]. These research emphasize on various perspectives, including the space–time pattern of COVID-19, human mobility and the spread of disease, the onset risk and the BE. Among these previous research, a large number of studies have analyzed the BE by considering various aspects such as building density, city infrastructure, public facilities and services to study the spreading mechanism of the COVID-19 epidemic. To fill this research gap, this study utilized space syntax theory and investigated the effect of the urban BE on the spatial diffusion of COVID-19 cases in Hong Kong
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.