Abstract
This work shows the value of word-level statistical data from the US Congressional Record for studying the ideological positions and dynamic behavior of senators. Using classification techniques from machine learning, we predict senators’ party with near-perfect accuracy. We also develop text-based ideology scores to embed a politician’s ideological position in a one-dimensional policy space. Using these scores, we find that speech that diverges from voting positions may result in higher vote totals. To explain this behavior, we show that politicians use speech to move closer to their party’s average position. These results not only provide empirical support for political economy models of commitment, but also add to the growing literature of machine-learning-based text analysis in social science contexts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.