Abstract
Development effort on Autonomous mobile robots that can operate in unknown environments are ongoing in order to extend the application area of the robots. In order to navigate, an autonomous mobile robot needs a map of the environment and location information relative to the map. Simultaneous Localization and Mapping (SLAM) is a prediction process in which the autonomous mobile robot can use this map to determine its position while building a consistent map. The purpose of this study is to examine the effect of geometric objects on SLAM performance. In this direction, three different experimental areas including equilateral triangular prisms, square prisms and cylinders are designed in a Gazebo. The fourth experiment area includes all three geometric objects used in the study. SLAM algorithm was tested by using the TurtleBot3 Waffle Pi robot. When the mapping times of the four experimental areas were compared, it was seen that the fastest scenario is achieved within triangular-only objects and the slowest within mixed prism. In terms of measures, the map including the triangular prisms is the closest to the actual measures of the simulated area. The obtained results show that the shapes of the geometric objects directly affect the performance of SLAM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.