Abstract

Optimum indoor humidity is often associated with comfort and overall well-being. Occupant comfort is often evaluated with a focus on “thermal comfort” using the PMV (predicted mean vote), PDD (predicted percentage of dissatisfied), and adaptive thermal comfort models. Humidity-determined comfort parameters, like skin and respiratory comfort, are well acknowledged in the scientific community, but strangely not considered for indoor comfort computations. This study proposes a new computational approach for describing and evaluating humidity-related skin comfort in buildings using skin temperature, evaporative loss, and skin wettedness as critical parameters. The Development and validation of the computational model was demonstrated through a case study in a rural Indian context. The case study involves real-time monitoring of indoor environmental parameters and humidity-determined occupant comfort votes recorded through a novel aggregated humidity comfort vote method. The simulation results were compared with the community comfort/health survey. It was observed that, even at neutral skin temperatures, an increase in skin wettedness increases the thermal sensation vote. Clothing varies according to gender, community, and personal preferences, influencing physiological parameters which determine comfort. The acceptable humidity ratio was found to be in the range of 17.4 to 22.6 g-wv/kg-da for Indian participants. Including humidity-related comfort parameters in building simulation tools would aid in selecting building materials for improved indoor comfort.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call