Abstract
Despite decades of research on psychiatric disorders, the aetiology and precise biological mechanisms that underlie depressive diseases are still poorly understood. There is increasing evidence that psychiatric disorders not only have a neurochemical basis but are also associated with morphological alterations in central nervous neurons and/or glial cells. Antidepressants may act by restoring structure as well as function of neural networks, meaning that they may, as a fundamental principle, affect neural plasticity underlying normal brain functioning. To examine these novel concepts of the pathophysiology of depression and antidepressant medication we have carried out a series of experiments using the chronic psychosocial stress paradigm in male tree shrews, an animal model with a high validity for the pathophysiology of depressive disorders, in which the animals were treated with the tricyclic antidepressant compound clomipramine. We found that one month of stress reduced cell proliferation in the dentate gyrus, and decreased the total hippocampal volume. Gene transcription analysis revealed that, under these experimental conditions, expression of genes known to be involved in processes of cell differentiation is suppressed. These effects of social conflict on hippocampal cells, including gene transcription, and on the entire hippocampal volume could be counteracted by chronic treatment with the antidepressant clomipramine. Stress also induced a constant hyperactivity of the hypothalamic-pituitary-adrenal axis, and suppressed both motor and marking behaviour. These neuroendocrine and behavioural stress-induced changes were also re-normalized by clomipramine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.