Abstract

Groundwater samples containing petroleum-derived dissolved organic matter (DOMHC) originating from the north oil body within the National Crude Oil Spill Fate and Natural Attenuation Research Site near Bemidji, MN, USA were analyzed by optical spectroscopic techniques (i.e., absorbance and fluorescence) to assess relationships that can be used to examine natural attenuation and toxicity of DOMHC in contaminated groundwater. A strong correlation between the concentration of dissolved organic carbon (DOC) and absorbance at 254 nm ( a254) along a transect of the DOMHC plume indicates that a254 can be used to quantitatively assess natural attenuation of DOMHC. Fluorescence components, identified by parallel factor (PARAFAC) analysis, show that the composition of the DOMHC beneath and adjacent to the oil body is dominated by aliphatic, low O/C compounds ("protein-like" fluorescence) and that the composition gradually evolves to aromatic, high O/C compounds ("humic-/fulvic-like" fluorescence) as a function of distance downgradient from the oil body. Finally, a direct, positive correlation between optical properties and Microtox acute toxicity assays demonstrates the utility of these combined techniques in assessing the spatial and temporal natural attenuation and toxicity of the DOMHC in petroleum-impacted groundwater systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.