Abstract

Optical characteristics of microcavity organic light-emitting devices (OLEDs) having two metal mirrors are examined. Analyses show that a high-reflection back mirror and a low-loss high-reflection exit mirror are essential for such microcavity devices to obtain luminance enhancement relative to conventional noncavity devices. An enhancement of 2 in cd/A efficiencies has been experimentally achieved for microcavity top-emitting OLEDs using an exit mirror composing thin metal and dielectric capping. The capping layer in the composite mirror plays the role of enhancing reflection and reducing absorption loss, rather than enhancing transmission.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.