Abstract

Three temporally close stratigraphic sections were excavated in Glenshaw Formation of Athens County, Ohio. The described units are Upper Pennsylvanian (Gzhelian, 305–302 Ma) and located in the distal portion of the Appalachian foreland basin. Mudstone units interpreted as paleosols were identified across all three sections. Detailed field and micromorphological studies lead to the recognition of two separate paleosols within the profile. The profile consists of a composite paleosol composed of two cumulative paleosols. The lower paleosol is interpreted as a calcic Vertisol which formed in a seasonally dry environment whereas the upper paleosol is interpreted as a gleyed Inceptisol which formed in a seasonally wet environment. The change in paleosol types is the result of increased precipitation which led to saturation of the soil and surface ponding. Pedogenic carbonate nodules are a common feature throughout the entire profile as are stress cutans. A coalesced carbonate horizon (Bk) was observed approximate 120 cm from the top of the profile in all three sections. This carbonate horizon formed in the Vertisol and later served as a barrier which limited the downward movement of surface water. This limited the gleization of the bottom portion of the overprinted Vertisol resulting in a diffuse boundary with the overlying Inceptisol and producing a composite paleosol.

Highlights

  • The stratigraphy of the northern portion of the Appalachian basin records climatic shifts from tropical ever-wet to sub-tropical conditions marked by moderate to strong seasonality often with significant dry periods during the deposition of the Late Pennsylvanian Conemaugh Group [1,2,3,4,5]

  • Paleosols have the potential to be excellent tools in the reconstructions of terrestrial paleoenvironments and paleoclimate due to the fact that they formed in direct exposure to climatic and related environmental conditions [6]

  • The Late Pennsylvanian Glenshaw Formation of Athens County, Ohio contains a composite paleosol that consists of two distinct, cumulative paleosols formed as a result a climatic shift from a semiarid, seasonal environment with extended dry periods to a subhumid, seasonal environment with extended wet periods

Read more

Summary

Introduction

The stratigraphy of the northern portion of the Appalachian basin records climatic shifts from tropical ever-wet to sub-tropical conditions marked by moderate to strong seasonality often with significant dry periods during the deposition of the Late Pennsylvanian Conemaugh Group [1,2,3,4,5]. Paleosols have the potential to be excellent tools in the reconstructions of terrestrial paleoenvironments and paleoclimate due to the fact that they formed in direct exposure to climatic and related environmental conditions [6]. The types of nodules present, horizon depth, as well as color and chemical variations within mottles allow for a more accurate interpretation of moisture conditions as well as the occurrence of or length of wet versus dry seasons and mean annual precipitation [6,9,11]. Since body fossil preservation is rare within these types of environments, the utilization of trace fossils is especially important in environmental interpretations. Paleosols preserve the activity of plants and animals, via ichnofossils, below and above the soil surface which represents soil biotas’ direct response to environmental and climatic conditions

Methods
Findings
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.