Abstract
This study examined whether three heads are better than four in terms of performance and learning properties in group decision-making. It was predicted that learning incoherence took place in tetrads because the majority rule could not be applied when two subgroups emerged. As a result, tetrads underperformed triads. To examine this hypothesis, we adopted a reinforcement learning framework using simple Q-learning and estimated learning parameters. Overall, the results were consistent with the hypothesis. Further, this study is one of a few attempts to apply a computational approach to learning behavior in small groups. This approach enables the identification of underlying learning parameters in group decision-making.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.