Abstract

We examine the use of recurrence networks in studying non-linear deterministic dynamical systems. Specifically, we focus on the case of k-nearest neighbour networks, which have already been shown to contain meaningful (and more importantly, easily accessible) information about dynamics. Superfamily phenomena have previously been identified, although a complete explanation for its appearance was not provided. Local dimension of the attractor is presented as one possible determinant, discussing the ability of specific motifs to be embedded in various dimensions. In turn, the Lyapunov spectrum provides the link between attractor dimension and dynamics required. We also prove invertibility of k-nearest neighbour networks. A new metric is provided, under which the k-nearest neighbour and ϵ-recurrence construction methods produce identical networks. Hence, the already established ϵ-recurrence inversion algorithm applies equally to the k-nearest neighbour case, and inversion is proved. The change in metric necessarily distorts the shape of the reconstructed attractor, although topology is conserved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.