Abstract

Complex networks capture the structure, dynamics, and relationships among entities in real-world networked systems, encompassing domains like communications, society, chemistry, biology, ecology, politics, etc. Analysis of complex networks lends insight into the critical nodes, key pathways, and potential points of failure that may impact the connectivity and operational integrity of the underlying system. In this work, we investigate the topological properties or indicators, such as shortest path length, modularity, efficiency, graph density, diameter, assortativity, and clustering coefficient, that determine the vulnerability to (or robustness against) diverse attack scenarios. Specifically, we examine how node- and link-based network growth or depletion based on specific attack criteria affect their robustness gauged in terms of the largest connected component (LCC) size and diameter. We employ partial least squares discriminant analysis to quantify the individual contribution of the indicators on LCC preservation while accounting for the collinearity stemming from the possible correlation between indicators. Our analysis of 14 complex network datasets and 5 attack models invariably reveals high modularity and disassortativity to be prime indicators of vulnerability, corroborating prior works that report disassortative modular networks to be particularly susceptible to targeted attacks. We conclude with a discussion as well as an illustrative example of the application of this work in fending off strategic attacks on critical infrastructures through models that adaptively and distributively achieve network robustness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.