Abstract
Clinical observations indicate that implicit procedural learning, a central component of physical and psychosocial rehabilitation, is impeded following spinal cord injury. In accordance, previous research has revealed a specific deficit in implicit sequence learning among individuals with paraplegia using a standard, manual version of the serial reaction time task. To extend these findings and shed light on the underlying sources of potential spinal cord injury-related deficits in sequence learning, we used an ocular activated serial reaction time task to compare sequence learning performance between individuals with tetraplegia and healthy controls. Twelve participants with spinal cord injury in C5-T1 were compared to 12 matched control participants on measures derived from an ocular activated serial reaction time task. Depression and additional cognitive measures were assessed to explore the source and specificity of potential sequence learning deficits. Like controls, and in contrast with previous findings in paraplegia, the spinal cord injury group showed intact implicit sequence learning, evidenced by declining reaction times and improved anticipation over the first six blocks of the serial reaction time task, and an advantage for the initial learning sequence over a novel interference sequence. The ocular activated serial reaction time task elicited a performance pattern similar to standard motor versions, such that participants with tetraplegia demonstrated unimpaired sequence learning. This suggests that previously reported implicit sequence learning deficits in spinal cord injury directly involved motor functioning rather than cognitive aspects of the task, and that the ocular activated sequence learning task could be a valid alternative for assessing implicit sequence learning in populations that cannot perform spinal-cord dependent motor tasks. Implications for post-spinal cord injury rehabilitation and adjustment are discussed.
Highlights
Implicit procedural learning, or the development of routine skills without reliance on conscious or explicit memory processes [1], can have far-reaching effects on the rehabilitation and overall well-being of individuals with spinal cord injury (SCI)
Previous research has revealed a specific deficit in implicit sequence learning among individuals with paraplegia using a standard, manual version of the serial reaction time task
This suggests that previously reported implicit sequence learning deficits in spinal cord injury directly involved motor functioning rather than cognitive aspects of the task, and that the ocular activated sequence learning task could be a valid alternative for assessing implicit sequence learning in populations that cannot perform spinal-cord dependent motor tasks
Summary
Clinical observations indicate that implicit procedural learning, a central component of physical and psychosocial rehabilitation, is impeded following spinal cord injury. Previous research has revealed a specific deficit in implicit sequence learning among individuals with paraplegia using a standard, manual version of the serial reaction time task. To extend these findings and shed light on the underlying sources of potential spinal cord injury-related deficits in sequence learning, we used an ocular activated serial reaction time task to compare sequence learning performance between individuals with tetraplegia and healthy controls
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.