Abstract

This paper reviews the performance of two time-dependent constitutive models in predictions of one-dimensional consolidation. The Soft-Soil Creep model [1] is an example of an elastic-viscoplastic formulation that incorporates a time-dependent state variable to estimate viscoplastic deformation. We show that the SSC model is equivalent to the isotache formulation proposed by Imai [2], as both are based on a unique relationship between stress, void ratio and the viscoplastic component of void ratio rate. Simulations of 1-D consolidation confirm that both models represent Hypothesis B behavior, where the axial strain at the End of Primary (EOP) consolidation is dependent on the depth of the clay layer. The effects of specimen thickness and the phenomenon of pore pressure increase at the start of consolidation are discussed in detail. Our interpretation highlights the importance of assumptions regarding the initial strain rate on the behavior observed at different scales under a given applied increment of loading.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.