Abstract

In this study, numerical simulations to investigate the effects of the spray characteristics of water mist on thermal radiation attenuation were performed using fire dynamics simulator (FDS). The droplet size, flow rate, and spray angle of the water mist were 100-300 µm, 1-3 L/min, and 60-180°, respectively. As the droplet size decreased and flow rate increased, the thermal radiation attenuation increased. When the spray angles decreased and increased behind the near nozzle center and behind a certain remote distance from the nozzle center, respectively, the thermal radiation attenuation increased. The peak thermal radiation attenuation increased with decreases in droplet size and spray angle and an increase in flow rate, whereas the average thermal radiation attenuation increased with a decrease in droplet size and increases in flow rate and spray angle. Under the numerical simulation conditions of this study, the peak and average thermal radiation attenuations were significantly altered by the ratios of droplet size and flow rate and by that of flow rate, respectively. However, their variations with the ratio of spray angle were the smallest.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call