Abstract

Significant insight into the response of granular materials can be gained by coupling accurately controlled physical tests with complementary discrete element simulations. This paper discusses a series of triaxial and plane strain laboratory compression tests on steel spheres with face-centered-cubic and rhombic packings, as well as discrete element simulations of these tests. The tests were performed on specimens of uniform-sized steel balls and on specimens of steel balls with specified distributions of ball diameters. The packing configurations are ideal and differ considerably from real sand specimens, however, studies of such idealized granular materials can yield considerable insight into the response of granular materials and the capability of discrete element simulations to capture the response. The differences in response for the two packing configurations considered illustrate the importance of fabric. The numerical simulations captured the observed laboratory response well if the particle configurations, particle sizes, and boundary conditions were accurately represented. However, the postpeak response is more difficult to capture, and it is shown to be sensitive to the coefficient of friction assumed along the specimen boundaries. The simulations of the tests on the nonuniform-sized specimens demonstrated a clear correlation between strength and coordination number.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call