Abstract
This study investigates the properties of sustainable self-curing concrete (SSC) by adding volcanic powder (VP), crushed ceramic (CC), and polyethylene glycol 6000 (PEG). VP and CC are prepared from volcanic ash, as a natural pozzolanic material, and construction waste, respectively. PEG is used as an inner-curing agent. Twenty-six concrete mixtures are prepared using VP at 5%, 10%, 15%, and 20%, CC at 50%, and PEG at 1%, 1.5%, and 2% and tested after 7, 28, and 56 days. Mechanical, workability, and durability characteristics are evaluated using different tests. The bond and cohesion between aggregates and mortar are tested using a scanning electron microscope (SEM). The results show that the optimum replacement mix for enhancing strengths, by producing C-S-H, of the studied SSC is 10% VP and 1.5% PEG. This improved the compressive, tensile, and flexural strengths of SSC by 54.5%, 60.7%, and 34.9%, respectively, compared to a reference mix. Adding CC enhances the compressive strength of SSC by 41.6% and 11.5% and decreases chloride penetration by 10% and 9.1% compared to control mixes. PEG improves the mechanical, workability, and durability characteristics of SSC even with the addition of 1%. The obtained results reveal the possibility of using VP and CC in producing SSC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.