Abstract

AbstractThe Apollo heat flow experiment (HFE) was conducted at landing sites 15 and 17. On Apollo 15, surface and subsurface temperatures were monitored from July 1971 to January 1977. On Apollo 17, monitoring took place from December 1972 to September 1977. The investigators involved in the HFE examined and archived only data from the time of deployment to December 1974. The present authors recovered and restored major portions of the previously unarchived HFE data from January 1975 through September 1977. The HFE investigators noted that temperature of the regolith well below the reach of insolation cycles (~1 m) rose gradually through December 1974 at both sites. The restored data showed that the subsurface warming continued until the end of observations in 1977. Simultaneously, the thermal gradient decreased, because the warming was more pronounced at shallower depths. The present study has examined potential causes for the warming. Recently acquired images of the Lunar Reconnaissance Orbiter Camera over the two landing sites show that the regolith on the paths of the astronauts turned darker, lowering the albedo. We suggest that, as a result of the astronauts' activities, solar heat intake by the regolith increased slightly on average, and that resulted in the observed warming. Simple analytical heat conduction models with constant regolith thermal properties can show that an abrupt increase in surface temperature of 1.6 to 3.5 K at the time of probe deployment best duplicates the magnitude and the timing of the observed subsurface warmings at both Apollo sites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.