Abstract

For more than a decade now, a measurement and post-processing technique involving modal filtering, named mathematical absorber reflection suppression (MARS), has been used very successfully to identify and subsequently extract range reflections in spherical, cylindrical and planar near-field antenna test systems and far-field (FF) and compact antenna test ranges (CATRs). Much of the early work concentrated on verification through experimental testing; however, some additional validation was performed using computational electromagnetic (EM) simulations. These considered first FF and subsequently near-field cases. The recent development of an accurate, flexible EM simulation tool that enables the simulation of `measured' FF pattern data as obtained from using a CATR has, for the first time, permitted the careful verification of the FF-MARS technique for a specified antenna under test (AUT) and CATR combination. This study presents simulated `measured' FF antenna pattern data in the presence of a large scatterer and then verifies the successful extraction of the scattering artefacts. In addition to considering range reflections, feed spill-over is also treated. Results are presented and discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.