Abstract
Classification of distorted patterns poses real problem for majority of classifiers. In this paper we analyse robustness of deep neural network in classification of such patterns. Using specific convolutional network architecture, an impact of different types of noise on classification accuracy is evaluated. For highly distorted patterns to improve accuracy we propose a preprocessing method of input patterns. Finally, an influence of different types of noise on classification accuracy is also analysed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.