Abstract
Three new IMAC chelating systems, incorporating immobilised xylenyl-bridged bis(1,4,7-triaza-cyclonane) ligands, complexed with Cu 2+ ions to form binuclear species, have been prepared. Their binding properties have been investigated with three small globular proteins (hen egg white lysozyme, horse skeletal muscle myoglobin and horse heart cytochrome c). The effects of buffer pH, ionic strength and composition on the binding behaviour of these proteins to these new IMAC sorbents have been examined and compared with those found for the corresponding immobilized mononuclear copper complex of 1,4,7-triazacyclononane (tacn). Higher protein binding affinities were observed with the Cu 2+-bis(tacn) sorbents compared to the Cu 2+-tacn system, consistent with the immobilized binuclear copper(II) species undergoing enhanced coordinative interaction with the surface-exposed histidine residues of these proteins. Moreover, the protein binding characteristics of these IMAC sorbents at higher ionic strengths, such as 1 M NaCl, also reflect the presence of the aromatic ring in the bis(tacn) ligands, whereby hydrophobic π/π stacking interactions can occur with the proteins.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.