Abstract
AbstractAl2O3‐ZrO2 composites exhibit excellent mechanical and high‐temperature properties. The solidification of various hypoeutectic compositions has been studied by means of aero‐acoustic levitation. A high‐speed camera recorded the crystallization, to the correlation of the video stills with the observed microstructures. Solidification takes place by formation of several nuclei and subsequent growth. Nuclei are formed in the supercooled melt, entailing to a fine‐grained, simultaneously solidified structure. The remaining melt between the growing nuclei is heated due to recalescence leading to primary precipitation of zirconia, followed by eutectic solidification. A consistent behavior is presented to explain the observed microstructures. Additionally, samples between 40 and 50 mol% ZrO2 exhibit lamellar areas, which exceed the initial zirconia composition. The observed microstructure strongly indicates the existence of a liquid miscibility gap.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Ceramic Engineering & Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.