Abstract

The four-point bend end-notched flexure (4-ENF) test, which was originally developed for measuring the mode II R-curve, is thought to be applicable for measuring the mode III R-curve. In this study, a 4-ENF fracture test of spruce was conducted for obtaining the mode III R-curve, and the test method was numerically and experimentally analyzed. In the numerical analysis, three-dimensional finite element calculations were conducted to determine the distribution of the strain energy release rate along the delamination front by the virtual crack closure technique (VCCT). In the experimental analysis, the mode III R-curve was examined by the modified beam theory and compliance calibration methods of data reduction, which have been conventionally used for analyzing the mode I or mode II R-curve. In addition to these conventional data reduction methods, the strain at each loading point was measured, as was the loading-line displacement and critical load for crack propagation, and the R-curve was obtained by the combination of loading-line compliance, load–longitudinal strain compliance, and critical load for crack propagation, which is named the “compliance combination method”. The finite element analyses suggested that the pure mode III fracture state existed in the mid-section of the specimen in spite of the existence of a small mode II component at the free edges of the delamination front, and the mode III strain energy release rate component calculated by the VCCT coincided well with those obtained by the data reduction methods examined here. The actual R-curve obtained by the compliance combination method coincided well with those by the modified beam theory and compliance calibration methods when the strain was appropriately measured. From these results, therefore, the 4-ENF fracture test is a promising means for obtaining the mode III R-curve of wood.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.