Abstract

Abstract An energy gap in the excitation of surface plasmons is found for light at normal incidence to a gold grating. This gap occurs at the crossing of the plus and minus first order surface plasmons. It arises directly as a consequence of distortion of the grating from sinusoidality, the first harmonic of the grating providing coupling between the plus and minus one orders. Experiments have been performed using both wavelength scans, where at a fixed angle of incidence the wavelength of excitation is varied, and angle of incidence scans, where for a fixed wavelength the angle of incidence is varied a few degrees either side of normal to the grating. By fitting the angular dependent reflectivity scans using grating modelling theory the gold grating is characterized at all wavelengths. This then allows a detailed comparison of the theoretical dispersion curve with that obtained experimentally. The agreement for both p-polarized light (for angle dependence with the plane of incidence normal to the grating grooves) and for s-polarized light (angle dependence with the plane of incidence perpendicular to the grating grooves) is excellent. An apparent momentum gap in the lower energy branch of the dispersion curve, attributed to the loss of coupling strength, is found to move to the upper branch if the grating profile is inverted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.