Abstract
The application of phosphorus based flame retardants as replacements for commonly used halogenated flame retardants has been gaining interest due to the possibility that these compounds may have a less significant impact on human and environmental health. Unfortunately, little is known about the chemical compositions of many of the technical products (which often are mixtures) and a single separation technique for concurrent analysis of these types of compounds has not been identified. This paper reports the results of an investigation into the constituents of three halogen free organophosphate flame retardants (OPFRs), resorcinol bis(diphenyl phosphate) (RDBPP), bisphenol A bis(diphenyl phosphate) (BPA-BDPP), and 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO). The major components of commercial samples of RDBPP and BPA-BDPP were isolated by preparative TLC and characterized by NMR. A commercial sample of DOPO was found to be essentially pure, but its analysis is complicated by the fact that it can exist in ring-open and ring-closed forms. With the structures of the components confirmed by NMR, multiple analytical separation techniques (gas chromatography (GC), liquid chromatography (LC), and packed column supercritical fluid chromatography (pSFC)) were investigated for the analysis of these three technical products. Packed column supercritical fluid chromatography allows the separation of the components of all three OPFRs, including the two forms of DOPO, in a single run.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.