Abstract
Two actinide isotopes, $^{241}$Am and $^{244}$Cm, produced and chemically purified by the HFIR/REDC complex at ORNL are candidates for target materials of heavy-ion fusion reaction experiments for the synthesis of new superheavy elements (SHEs) with $Z>118$. In the framework of the dinuclear system model with a dynamical potential energy surface (DNS-DyPES model), we systematically study the $^{48}$Ca-induced reactions that have been applied to synthesize SHEs with $Z=112$--118, as well as the hot-fusion reactions with $^{241}$Am and $^{244}$Cm as targets which are promising for synthesizing new SHEs with $Z=119$--122. Detailed results including the maximal evaporation residue cross section and the optimal incident energy for each reaction are presented and discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.