Abstract

In this paper, the results of empirical studies of the dark current and X-ray signal response of thick, polycrystalline films of lead iodide (PbI/sub 2/) and mercuric iodide (HgI/sub 2/) are reported. These studies are being carried out as part of an extensive, integrated program of research to develop and incorporate such photoconductive, X-ray detection materials into direct detection, active matrix flat-panel imagers (AMFPIs) for applications in diagnostic imaging, as well as for radiotherapy imaging. Simple detector configurations incorporating these materials were prepared by physical vapor deposition (PVD) with thicknesses ranging from approximately 90 to 500 /spl mu/m. For these detectors, the temporal behavior of the dark current and of the X-ray-induced photocurrent, under irradiation conditions relevant to fluoroscopy, radiography and mammography, were quantitatively examined and are reported. In addition, X-ray sensitivity results are also presented for a variety of conditions. The measurements were performed for externally applied electric fields ranging from 0.2 to 2.0 V//spl mu/m for both negative and positive polarities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.