Abstract

AbstractThe collisionally activated dissociation of a variety of isomeric disubstituted aromatic ions formed by ion–molecule reactions were examined in order to characterize ortho effects in closed‐shell systems. Closed‐shell ions of methoxyacetophenone, hydroxyacetophenone, methoxyphenol, anisaldehyde and hydroxybenzaldehyde were formed by proton transfer, methyl addition or methyne addition by using dimethyl ether or ethylene oxide as chemical ionization reagents, and then the structures of these adducts were studied by deuterium‐labelling methods and by collisionally activated dissociation techniques in a triple quadrupole mass spectrometer or a quadrupole ion trap. Typically, the meta and para isomers have qualitatively similar dissociation spectra which reflect the types of dissociation reactions observed for the corresponding monosubstituted aromatic ions. The predominant dissociation pathways of the [M + H]+ and [M + 15]+ ions are directed by the electron‐withdrawing substituents, whereas the major dissociation pathways of the [M + 13]+ ions are related to the electron‐releasing substituent. In contrast, the dissociation routes of the corresponding ortho isomers are dramatically different. This is attributed to the opportunity for functional group interactions of the ortho isomers which facilitate alternative pathways.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.