Abstract

This article examines the impact of fatigue cycles on polylactide samples produced by 3D printing using the FDM method. Samples were printed in three infill degree variants: 50%, 75% and 100%. To compere the influence of infill degree on PLA properties, several tests, including the uniaxial tensile test, the low-cycle fatigue test, differential scanning calorimetry (DSC) and scanning electron microscopy (SEM), were conducted. Poisson's ratio has also been studied. Single hysteresis loops were summed to obtain the entire low-fatigue cycle. The infill of density influenced all compared mechanical parameters. The decrease in infill degree caused the reduction of Young's modulus and shear modulus. For a 100% degree of sample infill, a higher number of transferred load cycles were observed compared to PLA with 75% and 50% of infill. Additionally, the value of the transferred cyclic load before fatigue failure and the dissipation of mechanical energy was the highest for 100% of infill. It is also worth noting that fatigue tests can positively affect the appearance of the PLA structure. Obviously, it depends on the number of load cycles and the infill density. It causes that if the goal is to transfer as much load as possible over a long period of time, the maximum filling of the printed element should be used.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.