Abstract

Volatile organic compounds (VOCs) emitted from solid fuels combustion (e.g., biomass and coal) are still the dominant precursors for the formation of tropospheric ozone (O3) and secondary organic aerosols (SOAs). Limited research focused on the evolution, as known as atmospheric aging, of VOCs emitted during long-timescale observations. Here, freshly emitted and aged VOCs from common residual solid fuel combustions were collected onto absorption tubes before and after passing through an oxidation flow reactor (OFR) system, respectively. The emission factor (EF) of freshly emitted total VOCs is in descending order of corn cob ≥ corn straw > firewood ≥ wheat straw > coals. Aromatic and oxygenated VOCs (OVOCs) are the two most abundant groups, accounting for >80% of the EF of total quantified VOCs (EFTVOCs). Briquette technology shows an effective reduction of the VOC emission, demonstrating a maximum 90.7% lower EFTVOCs in comparison to that of biomass fuels. In contrast, each VOC shows significantly different degradation in comparison to EF of freshly emitted and after 6- and 12-equivalent day aging (actual atmospheric aging days calculated from aging simulation). The largest degradations after 6-equivalent days of aging are observed on alkenes in the biomass group (60.9% on average) and aromatics in the coal group (50.6% on average), consistent with their relatively high reactivities toward oxidation with O3 and hydroxyl radical. The largest degraded compound is seen for acetone, followed by acrolein, benzene, and toluene. Furthermore, the results show that the distinction of VOC species based on long-timescale (12-equivalent day aging) observation is essential to further explore the effect of regional transport. The alkanes which have relatively lower reactivities but high EFs could be accumulated through long-distance transport. These results provide detailed data on fresh and aged VOCs emitted from residential fuels which could be used to explore the atmospheric reaction mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call