Abstract

The influences of rainfall patterns on shallow landslides due to the dissipation of matric suction are examined in this study. Four representative rainfall patterns including the uniform, advanced, intermediated, and delayed rainfalls are adopted. The results show that not only the occurrence of shallow landslides but also the failure depth and the time of failure are affected by the rainfall pattern. The different rainfall patterns seem to have the same minimum landslide-triggering rainfall amount. There is a rainfall duration threshold for landslide occurrence for a rainfall event with larger than the minimum landslide-triggering rainfall amount. For each rainfall pattern, the rainfall duration threshold for landslide occurrence decreases to constant with the increase of rainfall amount. The uniform rainfall has the least rainfall duration threshold for landslide occurrence, followed by the advanced rainfall, and then the intermediated rainfall. For each rainfall pattern, the failure depths and the times of failure from the same amount of rainfall with different durations could be largely different. In addition, the differences of the failure depths and the times of failure between various rainfall patterns with the same amount and duration of rainfall could be also significant. The failure depth and the time of failure, as compared with the occurrence of shallow landslides, are more sensitive to the rainfall condition. In other words, in comparison with the evaluation of the occurrence of shallow landslides, it needs more accurate rainfall prediction to achieve reliable estimations of the failure depth and the time of failure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call