Abstract

Dendritic growth is one of the most important phenomena during the solidification of alloys. However, solute redistribution on the front of solid-liquid interface may result in nonuniform distribution of concentration between dendrite branches. This often causes microscopic segregation and undermines the properties of materials. In order to control the solidification microstructure of Al–Li alloy, we firstly need to understand in depth the morphological and concentration evolution during dendrite growth. Here, the KKS (S.G. Kim, W.T. Kim, T. Suzuki) phase-field model coupling CALPHAD data is employed. The dependences of the dendrite morphologies and growth kinetics on undercooling or initial solute concentration are qualitatively analyzed. Dendrite growth rate increases slowly when undercooling ΔT is approximately less than 25 °C, and steeply when ΔT>40 °C corresponding to the transition from diffusional dendrite growth into rapid solidification. Accordingly, the obtained morphologies change from dendrite into seaweed crystal. The increase of supersaturation influences dendrite growth similarly in terms of growth rate and morphology. Moreover, through simulation of columnar dendrites growth, we find that the microscopic segregation becomes more severely with decreasing undercooling, or increasing supersaturation. These results demonstrate the capability of the technology---phase-field simulation coupling to CALPHAD in the modelling of microstructure evolution during solidification of alloys.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call