Abstract
The overstability for surface tension and coupled buoyancy-driven instability in a horizontal liquid layer, with very general conditions, is studied. A linear formulation to compute the critical quantities is established. Numerical results are given and compared with experiments in which a free surface is heated by a controlled hot-wire located near and below it. When correctly presented in terms of well-chosen reduced quantities, theoretical and experimental results agree very well, showing that there is an analogy between the theoretical problem (horizontal liquid layer, basic conductive state) and the experimental situation (hot-wire heating, basic convective state). Disagreements are pointed out to stress the limitations of the analogy. The original motivation of the work is the understanding of thermal lens oscillations produced when heating below the free surface is carried out using a laser beam.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.